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Abstract. Operatorsσ̂αβ for elastic strain andĈαβ for inelastic strain rate are introduced to
describe a small volumeV in a liquid undergoing steady Couette flow at high shear rate. An
information-theoretic distributioñρ is constructed depending on the operators and onCαβ ≡ 〈Ĉαβ 〉
andσαβ ≡ 〈σ̂αβ 〉, the ensemble averages which, along with the heat flow components, constitute the
measured information. Two components,Ĵs andĴp, stemming from self-diffusion and phonons,
are identified in the heat flux. The distributionρ̃ is used to calculateJs ≡ 〈Ĵs〉 which, unlike〈Ĵp〉,
depends onσαβ andCαβ in such a way as to imply that the thermal conductivity tensorLαβ exhibits
anisotropiesLxx > Lzz and 0< Lxy when the velocity gradient∂ux/∂y 6= 0. Such anisotropies
can be inferred from computer simulations of self-diffusion under shear.

1. Introduction

An early work (Nettleton 1961) on thermal conduction in liquids identifies two independent
components of the heat flux. One of these, which we designateJs, is carried by self-diffusing
molecules. A molecule oscillates in a cage formed by neighbours until a local expansion
permits it to diffuse into a neighbouring cage. As it diffuses, it carries a heath which is
an average energy, not enthalpy. The excitations contributing to the thermal motion include
longitudinal acoustic modes which propagate in liquids and whose frequency spectrum has
been extracted from molecular dynamics and neutron scattering (de Schepperet al 1983,
Bruin et al 1985). These modes, as is the case with phonons in a crystal, can carry heat,
and they contribute a componentJp to the heat flux. The model does not contemplate a high
density of locally-expanded regions in which diffusive motion is occurring, and the phonons
are treated as propagating in an average structure without reference to the ‘holes’. For the
mutual independence ofJp andJs we argue at greater length in section 2.

The paper (Nettleton 1961) which originally introducedJp and Js postulated time-
evolution equations for them which coupled the fluxes to each other and to the temperature
gradient. An evolution equation was also postulated for the density gradient, linking its
time derivative to the two heat flux components. However, for a system consisting of a
macroscopically-small volume immersed in a large, non-uniform fluid, which is also the
system used here, the density gradient characterizes the difference between the density of the
system and that of its surroundings. Therefore, this gradient is not an internal state variable.
Its evolution equation is derived from the hydrodynamic continuity equation and does not
obey the equation postulated in the earlier paper (Nettleton 1961). The remaining evolution
equations of that paper resemble the ones derived here. We show, however, that many of the
coupling coefficients are zero, using statistical methods not in general use when the original
paper was written. The molecular picture drawn in that paper has been partially superseded.
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Operators used in the present statistical calculation did not appear in the earlier (Nettleton
1961) phenomenology.

The coupling coefficients in the original paper were all isotropic. In the presence of
Couette flow, with mass velocityux(R) in thex-direction at pointR = (x, y, z) and a gradient
∂ux/∂y, the coefficients become anisotropic. This anisotropy has been demonstrated at high
shear rates for self- and binary diffusion by molecular dynamics (Sarmanet al 1992), and
computer simulations have been made for heat conduction (Baranyaiet al 1992). As we
proceed to show in the following sections, the thermal conductivity tensorLαβ should have
Lxx > Lzz andLxy < 0 for the flow geometry described above.

To investigate shear-induced anisotropy in the coupling coefficients, we employ the
information-theoretic phase-space distributionρ̃(x) wherex denotes the phase coordinates
of a system ofN molecules. The system is contained in a macroscopically-small subvolume
V immersed in a much larger non-uniform system in which there is a macroscopic velocity
gradient∂ux/∂y and a very small macroscopic temperature gradient∇T . Because|∇T | is
small,Js andJp are also small, being proportional in a steady state to∇T , and we can neglect
O(J 2

k ) (k = s, p). The volumeV is in the middle of the molecular dynamics cell at a pointR

whereu(R) = 0. If Ĵs andĴp are operators whose non-equilibrium ensemble averages are,
respectively,Js andJp, whilst σ̂αβ andĈαβ are operators for the elastic component of strain
and the inelastic strain rate, respectively, inV , we have forρ̃ the expression

ρ̃(x) = Z−1 exp

[
− β

{
Ĥ +

∑
α,β

(�
†
αβσ̂αβ +9†

αβĈαβ) + Φs · Ĵs + Φp · Ĵp

}]
. (1)

Hereβ ≡ (κT )−1; β�†
αβ , β9†

αβ , βΦs andβΦp are Lagrange multipliers which maximize
the information-theoretic entropy subject to specification of the values ofJs, Jp, σαβ ≡ 〈σ̂αβ〉
andCαβ ≡ 〈Ĉαβ〉 which, along with the temperature and density, constitute the measured
information. Ĥ is the Hamiltonian for theN particles inV . The daggers denote traceless
tensors, since the parametrizations of shear and compressional relaxation are distinct.Z

normalizesρ̃ to unity on integration over phase space.Z depends quadratically on the variables
to lowest order in this dependence.

The Lagrange multipliers in (1) can be evaluated as functions ofJs, Jp, σαβ andCαβ via
the matching conditions:

Jkα =
∫
ρ̃Ĵkα dx (k = s, p) (2a)

σαβ =
∫
ρ̃σ̂αβ dx (2b)

Cαβ =
∫
ρ̃Ĉαβ dx. (2c)

To study the anisotropy inLαβ , we expand the exponent iñρ and write(2a) in the form

Jkα =
∑
β

K
(k)
αβ 8kβ (k = s, p). (3)

The operators defined below in sections 2 and 3 have such a structure thatĴp is not appreciably
correlated with the other operators. To the extent that this is true, the normalizationZ−1 will
causeΦp to cancel out of(2a) whenk = s and terms inΦs to cancel out withk = p. A
proportionality betweenK(s)

αβ andL(s)αβ , the self-diffusion contribution toLαβ , can be inferred
if we use the information-theoretic entropy,

S = −κ
∫
ρ̃ ln ρ̃ dx (4)
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as a model for thermodynamic entropy. Under this assumption,Φs = −∂F/∂Js, whereF
is the Helmholtz free energy, and similarly for the other multipliers. Nettleton and Freidkin
(1989) have demonstrated this by showing that ifρ̃ from equation (1) is substituted into (4), a
Gibbs equation is obtained provided we identifyΦs with a free-energy derivative. To make the
contribution toṠ from irreversible processes within the system positive definite, we shall point
out in section 4 that an anti-reciprocal relation, implying the above-mentioned proportionality
betweenKαβ and thermal conductivity, should hold. Such an anti-reciprocity relation has
also been derived (Nettleton 1997) to all orders from the evolution equations derived from
the equation obtained by Robertson (1966) from the Liouville equation. The shear-induced
anisotropy in the conductivity can be predicted from the information-theoretic result (3).

To calculate the right-hand members of(2a)–(2c) as expansions in the Lagrange
multipliers, we need explicit analytic expressions for the operatorsĴs, Ĵp, σ̂αβ andĈαβ . The
heat flux operators will be defined in section 2. From the structure of the operators, we infer
thatJs andJp obey time-evolution equations which are not linearly coupled and that these two
flux components make independent contributions toLαβ . The papers of Robertson (1966) and
Nettleton (1997) are most relevant in connection with the statistical derivation of the evolution
equations.

In section 3, we discuss the operators forσ̂αβ and Ĉαβ . The mathematical structure of
these operators is such thatK(p)

αβ should not depend on shear and so the shear anisotropy in

thermal conduction stems fromK(s)
αβ . Accordingly, the shear anisotropy ofLαβ should relate

to that seen in computer simulations of self-diffusion (Sarmanet al1992). The reference most
relevant to section 3 (Nettleton 1996) discusses the model for the phonon spectrum, inferred
from the shape of the dispersion curve obtained by de Schepperet al (1983). It also proposes a
model forσ̂αβ which is modified here for reasons discussed later. A purely phenomenological
treatment (Nettleton 1964) exhibits the usefulness ofσαβ andCαβ as state variables.

In section 4, we give the detailed expressions for the anisotropic coefficients in the
expansion(2a) for Js. This permits us to derive an explicit expressing forK

(s)
αβ . In section 5,

the shear-induced anisotropies are written down, and a comparison is made with computer
studies of self-diffusion. In section 6 a summary and discussion are given of the foregoing
results.

2. Structure and coupling of the heat flux operators

The phonon model of heat conduction was originally put forward by Debye (1914) for gases and
was subsequently (Nettleton 1960) applied to liquids. This application gave a crude derivation
of the heat flux time-evolution equation from a wave model. In the present work, evolution
equations are derived instead by multiplying byĴs andσ̂αβ the equation derived by Robertson
(1966) for∂ρ̃/∂t and then integrating over phase space. The phonon spectrum extracted from
molecular dynamics and neutron scattering (de Schepperet al 1983, Bruinet al 1985) has a
typical longitudinal acoustic branchω(k)which rises and then bends over, as it does in a solid.
We suppose that the phonons with finite group velocity∂ω/∂k > 0 carry heat. The top of the
phonon branch, where it bends over, is taken to be approximately flat withω(k) = ω̄ for all
Np modes in this narrow propagating band.

This model was used (Nettleton 1996) to define an operator expression forσ̂αβ , assuming
that the elastic component of displacement of particlei was a superposition of modes with
ω > ω̄. This expression had mathematical complications, including derivatives of Dirac
deltas and the difficulty of obtaining an extensive entropy, which have been eliminated through
introduction of the modified expression forσ̂αβ given below in section 3.
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In our present model, phonons are assumed to propagate in an average disordered structure
which takes no explicit account of the small volume fraction of localized regions in which self-
diffusive motion is taking place. In this model, there should be no correlation between phonon
operators and the operatorĴs. Ĵs depends on the particle configuration and on the velocities
of randomly diffusing molecules.

The velocities of the diffusing molecules are part of the large-amplitude motion induced
by superposing the amplitudes of short-wavelength modes withω = ω̄ which expand a region
of diameter of the order of two intermolecular lengths. In the model, this picture is replaced by
an effective Maxwellian distribution of molecular velocities and a barrier-crossing probability
which is negligibly small for molecular configurations other than the locally-expanded ones.
Averages are taken over the Maxwellian distribution independently of averages computed using
the phonon Hamiltonian which refers to an average medium.

The operatorĴp for the phonon component of the heat fluxJ = Jp + Js should have, by
analogy with the corresponding expression for a solid, the form

Ĵp = V −1
∑
k

hωk(∂ωk/∂k)n̂(k) (5)

where the sum onk is taken over the portion of the longitudinal acoustic branch where
∂ωk/∂k 6= 0. n̂ is a phonon number operator. Equation (5) resembles the expression for heat
carried by phonons in an isotropic elastic solid. Equation (5) should be obtained if we quantize
the hydrodynamic modes at the long-wavelength end of the spectrum. The dispersion curve in
the region where∂ωk/∂k 6= 0 has been found (de Schepperet al 1983) to be hydrodynamic
throughout most of its length, although the reason for this is not clear at short wavelengths.

To construct the operator̂Js we suppose that3i(T , r1, . . . , rN) is the probability that
particlei can cross the potential barrier produced by its near neighbours and diffuse into a new
cage, carrying heath as it diffuses. The symbolh should not be confused with enthalpy. The
configuration dependence of3i should involve only positionsrj of near neighbours of particle
i appreciably. In general,3i should be expressible as an expansion in Hermite functions of
the components ofpi . Since there are no data to be fitted for which such a fine-tuned model
is needed,3i is taken to be average over an equilibrium momentum distribution to give a
function ofT . From these considerations, at a point where mass velocityu(R) = 0, we take

Ĵs = (mV )−1
N∑
i=1

pi3ih. (6)

In a hard-sphere model (Nettleton 1959),3i would be the probability that the cage has
expanded sufficiently to permit moleculei to escape.h would then be the average kinetic
energy.h is analogous, in the context of self-diffusion, to a heat of transfer. Thus equation (6)
impliesJs = hφs, whereφs is the flux of particles moving to neighbouring cages. In a model
where the particle crosses a barrier of finite height,h can be taken to be the average energy of
particles at the top of the barrier. In general,h, like 3i , should be an expansion in Hermite
functions of the{pi}. However, the qualitative conclusions we seek to predict and the accuracy
of existing computer algorithms does not require an expansion ofh.

Given equations (5) and (6) for the operators, one can construct evolution equations
for ∂Jk/∂t (k = p, s). To do this one can use an exact equation for∂ρ̃/∂t derived by
Robertson (1966) from the Liouville equation. Time-evolution equations forJp andJs are
obtained by multiplying the Robertson equation by the two operators and integrating over
phase space. Equations of this kind have been derived for variables which, likeJp andJs,
are odd under time reversal (Nettleton 1997). This formalism, in a study to be given in detail
elsewhere, expresses the terms in∂Jk/∂t linear inJs andJp in terms of correlation functions
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Cij (t) = 〈Ĵi exp(−iL̂t)Ĵj 〉0 calculated in an equilibrium ensemble, witĥL the Liouville
operator. If we adopt the model

Cij (t) = 〈Ĵi Ĵj 〉0 exp(−γij t) (7)

which is often used for mathematical convenience and which is consistent with the structure
of linear non-equilibrium thermodynamics, then there will be no linear coupling ofĴs andĴp

in the dissipative terms provided, as we have argued above, we have〈ĴsαĴpβ〉0 = 0. We can
reach the same conclusion about the coupling ofĴs andĴp without going into the mathematical
details by observing that the expansion of a cage of diameter one or two intermolecular lengths
is produced by waves of wavelength comparable to the diameter of the cage, which are waves
at the top of the phonon spectrum. These modes contribute to the motion of the diffusing
molecule and are independent of the longer wavelengths which contribute toJp. The local
expansion involves a superposition at random of the wavelengths of these short-wavelength
modes. There is, in this process, no interchange of energy betweenJs andJp. Consequently,
there is no coupling betweenJs andJp in the dissipative terms of the evolution equations.

In the presence of a temperature gradient, we have

∂Jkα/∂t = −γkJkα −
∑
β

γkL
(k)
αβ (∇T )β (k = s, p). (8)

Lαβ = L(s)αβ+L(p)αβ is the thermal conductivity tensor in a steady state in which the time derivatives
vanish. If we substitute for̃ρ from equation (1) into (4) and take the result to be a model for
thermodynamic entropy, we have remarked above that the requirement(∂S/∂t)irrev > 0 leads
to the anti-reciprocal relation

γkT L
(k)
αβ = K(k)

αβ V (k = p, s). (9)

We shall proceed to explain in section 3 whyK(s)
αβ , but notK(p)

αβ should exhibit shear-
induced anisotropy whose structure can be extracted from equation (3). Theγk are,
phenomenologically, reciprocals of the mean lifetimes of energy carriers. They may depend
nonlinearly onJs,Jp,σ †

αβ andC†
αβ , but they do not contribute to the anisotropy inLαβ calculated

from equation (9).

3. Operators for elastic strain and inelastic strain rate

An expression forσ̂αβ(R) (Nettleton 1996) has been proposed on the assumption that the
recoverable elastic strain, which disappears at zero stress, can be represented by its value at
a specified pointR in V . If the information-theoretic entropy (4) is to serve as a model for
thermodynamic entropy, the latter should be extensive, and this has been achieved withσ̂αβ(R)

by artificially inserting a factorN−1/2. This artificiality can be removed if we modify the earlier
definition by setting

σ̂αβ(R) = [ρ(R)]−1
N∑
i=1

mδ(ri −R)(∂sβi /∂rαi + ∂sαi /∂r
β

i ) (10)

wherem is the particle mass,ρ(R) the mass density atR andsi the elastic component of
the displacement of particlei at ri . We shall neglect∂ρ/∂R in a liquid. σ̂αβ(R), unlike the
previous expression (Nettleton 1996) can be averaged over all pointsR in V by multiplying
by V −1 and integrating overR to yield

σ̂αβ(x) = N−1
N∑
i=1

(∂s
β

i /∂r
α
i + ∂sαi /∂r

β

i ). (11)
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We shall see in section 4 that this definition leads to aΦs which is O(N) consistent with
Φs = −∂F/∂Js whereF is the Helmholtz function.

To motivate equation (11) as a natural expression forσ̂αβ(x), consistent with the model,
we reflect thatsi is the elastic part of the displacement of particlei, arising from Fourier
components of the particle motion with frequencies above the shear relaxation frequency. If
we imagine a continuous elastic solid in which the displacement at a pointri is si then the
curved bracket in (11) is the elastic strain in this solid atri . The expression in (11) is the average
of this strain over the set of points{ri}. This is then averaged overρ̃ and the coefficient of
the linear term in�†

αβ evaluated to make〈σ̂αβ〉 = σαβ . The operator in (11) is the one we
substitute intoρ̃ and which we use in the calculations of this paper. A further motivation for
(11) is found if we use an appropriate operator (Nettleton 1996) expressionP̂αβ in terms of
the displacements{si}. We find〈P̂αβ σ̂αβ〉 to be proportional toσαβ , so thatPαβ (α 6= β) to a
first approximation is linear in the elastic strain, as in a visco-elastic solid. Accordingly, the
definition (11) has the physical properties we expect of elastic strain.

Equation (10) has been included here because, on averaging, it leads to (11). Equation (10),
as an operator for strain atR, can be compared with the operator introduced earlier (Nettleton
1996) which was associated with the picture in which the strainσαβ(R) at one pointR in
V could characterize the strain for the whole system, forV small. The operator introduced
could not be averaged overV to produce a finite result. Operators defined at one pointR are
needed in the formalism of Robertson (1966) in which the physical state of a large system is
characterized by the values of variables taken at all pointsR within it. In the present picture,
variables refer to average properties of the whole system and are not defined to vary over the
volumeV .

The elastic displacementsi (ri ) is taken (Nettleton 1996) to be a superposition of a number
Np of high-frequency modes withω = ω̄ at the top of the phonon spectrum where the model
takes the dispersion curve to be flat. These frequencies are above the relaxation frequency for
structural re-arrangement. Following the corresponding expression for phonons in a solid, we
take

si = N−1/2
∑
ν

eνqν exp[ikν · ri ] (12)

where the sum is over theNp modes of frequencȳω and polarizationseν parallel tokν . We
have

〈qνq∗ν ′ 〉 = (κT /mω̄2)δνν ′ . (13)

To construct an operator̂Cαβ , we take

Ĉαβ = (ρV )−1
∑
i

(∂/∂rαi )[3i(p
β

i + pi · ∇ri sβi )] + (α ↔ β). (14)

The motivation for this definition resides in the observation that a particle oscillates within
a cage until it self-diffuses to a new position, and so the non-equilibrium average over
momenta,m−1〈3ipi〉 represents the rate of inelastic displacement of particlei. Then
(∂/∂rαi )〈3ip

β

i 〉 + (α ↔ β) is the inelastic strain rate multiplied bym. If we sum over all
particles and divide byρV = Nm, we get an average over all particle positions resembling
the average taken in equation (11).

The s-dependent term in̂Cαβ arises because the inelastic self-diffusive displacement
changesri and thus alsosi (ri ). This change of the elastic strain atri , produced by the
inelastic displacements, gives an additional inelastic contribution to the total strain rate.

Having defined thêσαβ and Ĉαβ operators, we have observed that there should be no
correlation between these operators andĴp. The elastic displacements depend on high-
frequency modes at the top of the phonon band which should not couple strongly via
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multiphonon processes to the energy-carrying modes. To a good approximation, the phonon
Hamiltonian can treat the energy-carrying and non-energy-carrying modes as independent. As
we have explained above, the phonon operators and diffusing particle momentum operators
are averaged separately. Then the factorZ−1 in ρ̃ will cause powers ofσαβ andCαβ , as well
as powers ofJs, to cancel out of equation(2a) whenk = p. It is, accordingly,K(s)

αβ and not

K
(p)
αβ which will exhibit a dependence onCαβ andσαβ and a resultant shear-induced anisotropy.

This anisotropy will be obtained explicitly in the following section.

4. Determination ofK(s)
αβ

To calculateK(s)
αβ , we substitute from (1) into(2a) in which k = s and then expand in powers

of φs,�
†
αβ and9†

αβ . In a steady state with a velocity gradient having∂ux/∂y as the sole non-
vanishing component,σxy andCxy plusx ↔ y will be the sole non-zero components of the
elastic strain and inelastic strain-rate tensors, respectively. From considerations of tensorial
invariance,(2a) with k = s must assume the form

Jsα = −β8sα/ϒs − β3φ(3)a

∑
ζχ

8sζ9
†
ζχ9

†
χα − β3φ

(3)
b

∑
ζχ

8sα9
†
ζχ9

†
χζ

+β4φ(4)
∑
ζχε

9
†
αζ9

†
ζχ�

†
χε8sε + O(J 2

s Js) (15)

whereϒs, φ
(3)
a , φ(3)b andφ(4) are extracted in the course of expanding(2a) in powers of the

Lagrange multipliers in (1).
Each of the coefficientsφ(3)a ,φ(3)b andφ(4) is proportional to an average of a sum of products

of four momentum operators. One of these comes fromĴsα in (2a) and the three others from
products such aŝJsζ Ĉζχ Ĉχα which multiply Ĵsα. These four momenta can be paired in various
ways according to the scheme

〈pαi pγk pµy pζz 〉0 = (mκT )2[δikδαγ δyzδµζ + δiyδαµδkzδγ ζ + δizδαζ δkyδγµ]. (16)

The first term on the right-hand side, proportional toδαγ , is cancelled in(2a) by contributions
from the normalization factorZ−1. Once the momentum operators have been paired, one
picks out of the products of the operatorsσ̂αβ andĈαβ the terms involving an even number of
displacementssi , which are averaged with the aid of equation (13).

To simplify the results, we appeal to the model which assumed that the displacements
si could be calculated as a superposition of high-frequency acoustic modes which propagate
in an average structure. This structure is independent of the particle configuration within the
locally-expanded regions where self-diffusion is occurring. Thus we set, for example,

〈32
i 3

2
j s
α
i s

β

j 〉0 ∼= 〈32
i 3

2
j 〉0〈sαi sβj 〉0. (17a)

Here, if i 6= j ,

〈sαi sβj 〉0 = N−1(κT /mω−2)
∑
ν

eαν e
β
ν g(kν) (17b)

whereg(kν) is the liquid structure factor and the sum is over modes withων = ω̄. The
operatorsĈαβ andσ̂αβ involve spatial derivatives of the{si}, and so we encounter the following
combinations of products ofkν factors:

χ1ν ≡ kxν kyν exν eyν (18a)

χ3ν ≡ (kxν kyν ezν)2. (18b)
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There are also spatial derivatives of the3i operators in the strain and strain-rate expressions,
and so we also encounter

2ij ≡ 〈3i3j(∂3i/∂r
x
i )(∂3j/∂r

x
j )〉0 (19a)

5ij ≡ 〈(3i3j )
2〉0. (19b)

A further simplification is used which is necessary if we are to neglect inφ(4) terms of
O(N−3), which are incompatible with an extensive entropy. We observe that if particlei is
diffusing, its near neighbours will, in most cases, not be so doing because this would require
a local expansion in a region of several molecular diameters. This is improbable and indeed
structural ‘holes’ do not appear in molecular dynamics simulations. Accordingly, if particlei is
diffusing out of its cage, it is improbable thatj is also diffusing unlessj is not a near neighbour
of i. The function3i depends onri and on the coordinates of near neighbours, and so the
arguments of3i and3j should not overlap in any important way. In the non-overlapping
configurations which have an appreciable probability of occurring,3i and3j with j 6= i

should be independent, and so we set

212
∼= (1/4)〈∂32

1/∂r
x
1 〉0〈∂32

2/∂r
x
2 〉0 = 0. (20)

3i depends on the interactions betweeni and its neighbours, i.e. on{|ri − rk|} for k close to
i. Then, in equilibrium, the averages of the spatial derivatives in (20) will be zero.

With the foregoing approximations and simplifications, we obtain after lengthy
calculations

φ(3)a = 2(hκT /ρV 2)2

×
[
2N211 + (κT /mω̄2)

∑
ν

{4χ1ν211 + 16χ3ν511 + 12χ3ν512ng(kν)}
]

(21a)

φ
(3)
b = 2(hκT /ρV 2)2(κT /m−2)

∑
ν

[2χ1ν211 + 4χ3ν511 + 4χ3ν512ng(κν)] (21b)

φ(4) = 16(hκT /ρV 2)2(κT /Nmω̄2)211

∑
ν

χ1ν [ng(kν) + 1]. (21c)

If the density of phonon modes ink-space is O(N), which is usually the case, the sums
over theNp modes at the top of the spectrum in(21a)–(21c) will each be proportional toN .
This makesφ(3)a andφ(3)b each O(N−3). In equation (14), these coefficients are multiplied
by three Lagrange multipliers. These are all O(N), being free-energy derivatives, and so the
right and left members of (14) are both of zero order inN , as required for consistency. From
(21c), we conclude thatφ(4) is O(N−4). Sinceφ(4) is multiplied by four Lagrange multipliers
in equation (14), again we obtain consistency.

In addition to theN -dependence, we can establish the signs ofφ
(j)

k in (21a)–(21c). All
quantities therein are greater than zero saveg(kν). A calculation of the structure factor for
a hard-sphere model (Verlet 1968) gives−1 < ng(k) < 0 for kνσ̄ . 6, whereσ̄ is the
hard-sphere diameter. The shortest wavelength which can propagate should be∼2σ̄ which
should makekνσ̄ . π . The factorng(kν) + 1 should be greater than zero in(21c). A similar
conclusion holds for(21a) and (21b) if 512 < 511. Now by the reasoning leading up to
equation (20)

512
∼= 〈32

1〉0〈32
2〉0 = (〈32

1〉0)2. (22)

In a hard-sphere model, if the amplitudes of the modes withω = ω̄ superpose to produce
a relative displacement of neighbouring molecules∼σ̄ , a molecule can diffuse, and otherwise
it cannot. Thus, either3i ∼ 1 or3i is very small. Ifq̃1 is the fraction of states in which
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3i ∼ 1, then511 ∼ q̃1 and512 ∼ q̃2
1. Thus, we can set512 5 511 which assures that

φ
(3)
a > 0> φ

(3)
b .

All the coefficients in equation (15) have been determined saveϒs. This is given by

ϒs = mV 2/(Nh2〈32
1〉0). (23)

Similarly, the lowest approximations to equations(2b) and(2c) yield (no sum on repeated
indices)

�
†
αβ = −ϒ1σ

†
αβ (24a)

9
†
αβ1
= −υ1C

†
αβ (24b)

υ1 = 2β〈ĈαβĈβα〉0 (24c)

ϒ−1
1 = 8βN−2(κT /mω̄2)

∑
ν

{1 +ng(kν)}. (24d)

The average in(24c) is a lengthy expression which is O(N−1), like ϒ−1
1 . We se thatϒs, ϒ1

andυ1 are greater than zero.
Rearranging equation (15) and introducing(24a) and(24b), we obtain an expression in

the form of (13), with

K
(s)
αβ = (β/ϒs)δαβ + β2J 2

s φ
(2)ϒ2

s δαβ + β3φ(3)a υ2
1

∑
γ

C†
αγ C

†
γβ + β3φ

(3)
b υ2

1C† : C†

+β4φ(4)ϒ1υ
2
1

∑
γω

σ †
αγ C

†
γωC

†
ωβ (25)

whereδαβ is the Kronecker delta. This result can be used in equation (9) to determineL
(s)
αβ ,

the self-diffusion contribution to the thermal conductivity. This contribution accounts for the
entire shear anisotropy, which we discuss in the following section.

5. Shear-induced anisotropy inLαβ

We consider the case of Couette flow, with

C†
xy = C†

yx = C σ †
xy = σ †

yx = σ. (26)

In a computer simulation,Cmay be large. In a steady state, from the kinetic evolution equations
for Ċ†

αβ andσ̇ †
αβ (Nettleton 1987), we have

σ = −ηsVϒ
−1
1 C (27)

whereηs is the shear viscosity. Then we obtain

K(s)
xy = −φ(4)υ2

1V ηsC
3 (28a)

K(s)
xx = (β/ϒs) + β2ϒ2

sφ
(2)J 2

s + β(3)υ2
1(φ

(3)
a + 2φ(3)b )C2 (28b)

K(s)
zz = (β/ϒs) + β2ϒ2

sφ
(2)J 2

s . (28c)

We consider|∇T | to be very small, so that the O(J 2
3 ) terms can be neglected.

From equation (9), we see thatγs does not affect the anisotropy ofL(s)αβ . Equations(28a)–
(28c) imply the relations

Lxx > Lzz (29)

Lxy = Lyx < 0. (30)

This corresponds to what is observed (Sarmanet al 1992) in self-diffusion and we expect it
to hold for the self-diffusion component of thermal conduction. Computer simulations do not
predictLxy = Lyx , probably as an artifact of the thermostatting.
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6. Summary and discussion

Following an early model (Nettleton 1961), the heat fluxJ in a liquid is resolved into two
components,Jp and Js. Jp is carried by propagating longitudinal acoustic phonons for
which the dispersion curve can be extracted from molecular dynamics and neutron scattering
(de Schepperet al 1983, Bruinet al 1985). At the top of the spectrum, it bends over and is
approximated as flat (Nettleton 1996). Since∂ω/∂k = 0, these high-frequency modes with
ω = ω̄ carry no heat, but they contribute to the elastic component of strain.

The modes in the flat region of the dispersion curve have a wavelength of a few
intermolecular distances. In the present model, their amplitudes superpose randomly to create
localized expansions which move the neighbours of a given molecule apart, permitting the
molecule to diffuse into a neighbouring cage (Nettleton 1959). The self-diffusing molecules
transport heat, creating the self-diffusion heat flow,Js. The relaxation frequencyγs is the
probability per unit time for such an expansion to occur.

Equation (8) does not provide for appreciable energy exchange betweenJp andJs. The
dissipative terms for either flux do not depend on the other save possibly inγs andγp, which
do not affect the anisotropy. The local expansions can scatter phonons as do point defects
in a crystal, but the model assumes that the concentration of these defects is small and
we are not considering low temperatures. Thereforeγp, the relaxation frequency forJp,
should be associated with multi-phonon processes. Since the local expansion involves random
superpositions of the amplitudes of modes at the top of the band, the expansions can occur
without drawing energy fromJp, and the large-amplitude motion in the expanded regions
comes from the short-wavelength modes and is independent of Jp. Thus, there is no correlation
between the two fluxes and〈ĴpαĴsβ〉0 = 0. This observation, plus the model in equation (7),
provides an additional reason based on the Robertson (1966) formalism for concluding that
the modes have no linear coupling in the dissipative terms of (8). The latter terms should be
represented by two relaxation frequencies as we have done.

The shear-induced anisotropy in thermal conductivityLαβ has been found on the basis
of these model assumptions, to arise entirely fromJs. The high-frequency modes which
contribute to elastic displacementsi (ri ) are not correlated appreciably with those which
contribute toJp, as is also the case with3i which depends on these modes and with the
random diffusive motions which occur in places where3i is appreciable. Accordingly, the
normalization factorZ−1 causes any dependence onσ †

αβ orC†
αβ to cancel out of equation(2a)

whenk = p and fromK(p)
αβ which is proportional toL(p)αβ . The dependence onσ †

αβ andC†
αβ

appears only inK(s)
αβ andL(s)αβ .

To express the integrals in(2a) in a form which can be rearranged into equation (3), we
have had to introduce operatorsσ̂αβ andĈαβ for the elastic strain tensor and inelastic, i.e. self-
diffusion, component̂Cαβ of the strain rate. These operators are introduced into equation (1)
for the Jaynesian distributioñρ(x). The operator̂σαβ has been proposed previously (Nettleton
1996) and is modified here so thatσ̂αβ can be an average over the small volumeV rather than
the elastic strain at a point. This leads less artificially to an extensive entropyS given by
equation (4). The parametrization of viscoelasticity based onσ

†
αβ andC†

αβ follows an early
phenomenological treatment (Nettleton 1964) which has not been followed by others who have
invariably used the inelastic strain rather thanσαβ . The operators and parametrization used
here are designed to conform to the earlier phenomenology (Nettleton 1964, 1987).

The anisotropy inLαβ given by (29a) and (29b) is of a type which appears in self-
diffusion and also in binary diffusion (Sarmanet al 1992) where thêσαβ andĈαβ operators
can be given a mathematical structure similar to the one used here. We are not in a position
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to make quantitative comparisons with computer simulations since the computer algorithms
in the anisotropy studies were in a developmental stage whilst an accurate calculation of3i is
a complicated problem. The model operators introduced here should not be used to study the
non-analyticity seen (Hanley and Evans 1982) in thermodynamic pressure and viscosity at high
shear rate. For that, instead of choosing a small volumeV with a limited number of variables,
one needs to characterize a large, non-uniform system by specifyingσ

†
αβ(R), C

†
αβ(R), ρ(R),

andu(R) at all pointsR. One uses a generalization of equation (1) in which the exponent
contains an integral overR (Robertson 1966). To date, the non-analyticities in such a picture
have been predicted via hydrodynamic mode coupling.
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